Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1.
نویسندگان
چکیده
The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are dangerous lesions that can disrupt genome integrity, so meiotic cells regulate their number, timing, and distribution. Mechanisms of this regulation remain poorly understood. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to reveal aspects of the contribution of the Saccharomyces cerevisiae DNA damage-responsive kinase Tel1 (ortholog of mammalian ATM). A tel1Δ mutant has globally increased amounts of Spo11-oligonucleotide complexes and altered Spo11-oligonucleotide lengths, consistent with conserved roles for Tel1 in control of DSB number and processing. A kinase-dead tel1 mutation similarly increases Spo11-oligonucleotide levels but mutating known Tel1 phosphotargets on Hop1 and Rec114 does not, implicating Tel1 kinase activity and clarifying roles of Tel1 phosphorylation substrates. Deep sequencing of Spo11 oligonucleotides demonstrates that Tel1 shapes the genome-wide DSB landscape in unexpected ways. Early in meiosis, Tel1 absence causes widespread changes in DSB distributions across large chromosomal domains. Many of these changes are erased as meiosis proceeds, however, illustrating homeostatic behavior of DSB regulatory systems. We further find that effects of Tel1 are distinct but partially overlapping with previously described contributions of the recombination regulator Cst9 (also known as Zip3). Finally, we provide evidence indicating that Tel1-dependent DSB interference influences the population-average DSB landscape but also demonstrate that locally inhibitory effects of an artificial hotspot insertion can be both Tel1-independent and chromosomal context-dependent. Our findings delineate Tel1 roles in regulating number and location of DSBs and illuminate the complex interplay between Tel1 and other pathways for DSB control.
منابع مشابه
Phosphorylation of the Axial Element Protein Hop1 by Mec1/Tel1 Ensures Meiotic Interhomolog Recombination
An essential feature of meiosis is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks (DSBs) is repaired using an intact homologous non-sister chromatid rather than a sister. Involvement of Mec1 and Tel1, the budding yeast homologs of the mammalian ATR and ATM kinases, in meiotic interhomlog bias has been implicated, but the mechanism remain...
متن کاملBudding Yeast ATM/ATR Control Meiotic Double-Strand Break (DSB) Levels by Down-Regulating Rec114, an Essential Component of the DSB-machinery
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essenti...
متن کاملPch2 Prevents Mec1/Tel1-Mediated Hop1 Phosphorylation Occurring Independently of Red1 in Budding Yeast Meiosis
A prominent feature of meiosis in most sexually reproducing organisms is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks are repaired using intact homologous non-sister chromatids rather than sister chromatids. Budding yeast DNA damage checkpoint kinases Mec1 and Tel1 act together with the axial element protein Red1 to promote interhomolo...
متن کاملDirect and Indirect Control of the Initiation of Meiotic Recombination by DNA Damage Checkpoint Mechanisms in Budding Yeast
Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2017